
APPENDIX -1- Commands of the line editor EDIT (FBBDOS)
--

 The FBBDOS offers a small line editor allowing the process of ASCII files.
It can help the distant SysOp maintening the system files of the software.

 The commands are straightforward, and for a better efficiency, they can be
chained on a single line.

 List of the commands:

 ? : Gives the list of the editor's commands.

 A : Adds one line after the current line. The text of the line follows the
command, and must be terminated with the character /. The character / can be
imcluded into the character string provided it is preceded by a character \.
To include a \ character into the string, this character must be sent twice
(\\). The line pointer is on the inserted line.

 B : places the line pointer at the beginning of the file.

 E : places the line pointer at the end of the file.

 F : Search for the first occurence of the character string as specified
after the command, starting from the current line. The character string
should be terminated by the character /. The character / can be inserted into
a string under the condition that a \ character is leading. The \ character
must be sent twice if it is to be considered as a valid character. The line
pointer stands on the line where the string has been found.

 I : Inserts a line ahead of the current line. The text of the line follows
the command and must be terminated by the character /. The character / can be
included into the string provided it is preceded by a character \. The
character \ must be sent twice if it is to be considered as a valid
character. The line pointer stands on the inserted line.

 K : Suppresses the number of lines specified before the command, starting
from the current line. If the number is not stated, the value 1 is taken as a
default.

 L : moves the pointer of the number of lines specified before the command.
This number can be positive or negative.

 N : Enables or disables the numbering of the lines.

 P : Displays the number of lines specified before the command, starting at
the current line.

 R : Search for the first occurrence of the character string specified after
the command, and replace it by the second character string. The character
strings must be terminated by a character /. The / character can be included
provided it is preceded by a \ character. The \ character must be sent twice
if it is to be taken into account as a valid character. The line pointer
stays on the modified line.

 S : Saves the modified file.

 Q : Exits the editor. Take care, the file is not automatically saved. Think
about doing it before you quit.

 Examples :

 EDIT>B5L10P

FBB 5.15 Feb 06 1993 Page - 140

 places the pointer at the beginning of the file, advances 5 lines, displays
10 lines.

 EDIT>B4L6K-2L10P

 Places the pointer at the beginning of the file, advances 4 lines, deletes 6
lines, steps back 2 lines and displays 10 lines.

 EDIT>BFBonjour/K-2L5P

 Sets the pointer at the beginning of the file, searches for "Bonjour",
suppresses the line (containing "Bonjour"), steps back
 2 lines, and displays 5 lines.

 EDIT>RBonjour/Au revoir/-2L5P

 Searches for "Bonjour", replaces by "Au revoir", steps back 2 lines and
displays 5 lines.

 EDIT>BFBonjour/IC'est une new line with a \/inside/-1L3P

 Sets the pointer at the beginning of the file, searches for "Bonjour",
inserts a new line, steps back 1 line, and displays 3 lines. This lines
includes a character /. A leading \ indicates that it is to be conside red as
a valid character and not as a delimiter.

 EDIT>SQ

 Saves, and quits the editor.

FBB 5.15 Feb 06 1993 Page - 141

APPENDIX -2- Commands corresponding to the PK232 host-mode (as per F6AIW)

 8B 8BITCONV AU AAB AB ABAUD AG ACHG AA ACRDISP
 AK ACRPACK AT ACRRTTY AE ADDRESS AD ADELAY AI ALFDISP
 AP ALFPACK AR ALFRTTY AL ALIST AM AMTOR AC ARQ
 AO ARQTMO AS ASCII AY ASPECT AW AWLEN AV AX25L2V2
 AX AXDELAY AH AXHANG BA BAUDOT BE BEACON BI BITINV
 BK BKONDEL BT BTEXT CL CANLINE CP CANPAC CX CASEDISP
 CU CBELL CC CCITT CF CFROM CB CHCALL CD CHDOUBLE
 CH CHSWITCH CK CHECK CQ CMDTIME CM CMSG CI CODE
 CN COMMAND CE CONMODE CO CONNECT CY CONPERM CG CONSTAMP
 CI CPACTIME CR CRADD CT CTEXT CW CWID DS DAYSTAMP
 DA DAYTIME DC DCDCONN DL DELETE DF DFROM DI DISCONNE
 DW DWAIT EA EAS EC ECHO ES ESCAPE FA FAX
 FN FAXNEG FE FEC FL FLOW FR FRACK FS FSPEED
 FU FULLDUP GR GRAPHICS HB HBAUD HD HEADERLN HI HID
 HO HOST HP HPOLL ID ID IL ILFPACK IO IO
 JU JUSTIFY KI KISS LR LEFTRITE LO LOCK MX MAXFRAME
 MB MBX MC MCON MD MDIGI MM MEMORY MI MFILTER
 MF MFROM MH MHEARD MN MONITOR MO MORSE MP MSPEED
 MR MRPT MS MSTAMP MT MTO MA MYALIAS ML MYCALL
 MG MYSELCAL MK MYALTCAL NE NEWMODE NO NOMODE NR NUCR
 NF NULF NU NULLS OK OK OP OPMODE PA PACKET
 PL PACLEN PT PACTIME PR PARITY PS PASS PX PASSALL
 PE PERSIST PP PPERSIST PC PRCON PF PRFAX PO PROUT
 PY PRTYPE RW RAWHDLC RB RBAUD RC RCVE RE RECEIVE
 RX RXREV RD REDISPLA RL RELINK RS RESET RP RESPTIME
 RT RESTART RY RETRY RF RFEC SE SELFEC SP SENDPAC
 SI SIGNAL SL SLOTTIME SQ SQUELCH SR SRXALL ST START
 SO STOP TB TBAUD TC TCLEAR TM TIME TR TRACE
 TW TRFLOW TI TRIES TD TXDELAY TF TXFLOW TX TXREV
 UN UNPROTO UR USERS US USOS VH VHF WI WIDESHFT
 WO WORDOUT WR WRU XW XFLOW XM XMIT XO XMITOK
 XF XOFF XN XON

FBB 5.15 Feb 06 1993 Page - 142

APPENDIX -3- Process number and on-line help identification.
--

 The various processing functions contained in the software are identified by
three numbers displayed in the status banner. The first of those three
numbers is the main process system (BBS, FBBDOS, Satellite
Computation, etc...), the second number is the process function (in the BBS,
list, message sending, etc..) and the third number is a sub-function (record
of the message title, message, etc..)

 A complete description of these numbers would be useless and time consuming.
They are mainly used for debugging purpose. The first number is also used to
identify the help block out of the x.HLP file. Upon receipt of the "?" or the
"H", the software searches the x.HLP file for a line of
corresponding to the language in use, and of the format @@ number word in
which "number" stands for the current processing level, and "word" stands for
the word following the command "?" or "H".

 Example : you are inside FBBDOS, and you type in the command "? EDIT", the
help block searched for must begin with the line:

 @@ 9 EDIT

 It may happen that a block matches several search keywords. It is enough to
specify the various words separated by the character "|" (vertical bar), WITH
NO SPACE.

 @@ 9 EDIT|EDITEUR

 List of the processing levels :

 0 Connection.
 2 Qra-Locator.
 3 Statistics.
 4 Informations.
 5 Nomenclature.
 6 Satellite Orbital Computation.
 9 FbbDos.
 11 Telefone Modem
 14 BBS.
 15 Forward.
 16 GatewaySysop page.
 17 YAPP.
 18 Conference.

FBB 5.15 Feb 06 1993 Page - 143

APPENDIX -4- Recording a message.

 A message can be left by a user or within a forwarding connection. The
recording mechanism is always the same.

 The recording command is always like :

 Sx desti @ bbs < exped $ ident + filename

 Only recipient field is mandatory, all other fields are optional.

 Appending a filename is a possibility reserved to the sysop. The name must
be complete, including logic unit and complete path (C:\FBB\SYSTEM\TEST.TXT).

 When receiving the command line, a first test checks if a route exists when
a route has been specified, or if the message must be automatically routed
when no route was specified.

 The title of the message is then asked to the user.

 If the title is a missing, the message is canceled and the user returns to
the main menu.

 The text of the message is then asked to the user.

 The software checks possible preamble lines. These lines give informations
on the previous BBS having routed this message. They all begin by R: on first
column. The BBS callsign is given behind the @ character within the preamble
line. All adjacent BBS mentioned in this preamble will be included in the
"already forwarded" list, and will not be concerned by this message. This
list specific to each message can be displayed with the $ or FN command
followed by the message number.

 When receiving a /EX in first column, or a Ctrl Z, a message number is then
assigned, The BID (or MID if private) and the list of adjacent BBS concerned
by this message are created. All these informations are sent to the user when
acknoledging the message.

 In case of disconnection before the /EX or Ctrl Z, the whole message will be
lost, and the texts already stored are deleted.

 All informations about the message (sender, recipient, route, MID, title,
etc...) are stored in the DIRMES.SYS file. The text of the message is stored
in a sub-directory of the MAIL directory. The sub-directory is MAILn where n
is the last digit of the message number. The name of the file corresponds to
the message number 123 is M_000123.MES, the number is 6 digits wide, in this
case it is in the sub-directory MAIL3.

 The message number uses a long integer (32 bits), the number boundary is
very far (more than 4 billions !).

FBB 5.15 Feb 06 1993 Page - 144

APPENDIX -5- Tricks and tips.

 This rubric is yours, more than mine. I'll try to insert there all tricks
you will tell me.

 A/ Using DesqView (c).

 There is no particular problem when using DesqView. The minimum window size
is 500 KB. You MUST use communication drivers, like ESS, COMBIOS or MBBIOS,
as the software does not dispose of the whole process time.

 B/ Communication errors displaying.

 An error counter can be displayed just right of the date, on the first line
of the screen. If you are using TNC2 with WA8DED software, these errors can
be minor, but with PK232, error recovery is more difficult, and the system
may reboot.

 With a correct operation of your system, this counter will not appear, or
exceptionnaly. If errors are displayed, they can result from :

 - Using DOS 4.0 or 5.0 : The keyboard driver of these versions is very slow.
You must use the ESS driver for RS232 (or COMBIOS).

 - A too hight baudrate, or RS232 defective cables. The baudrate can be
selected down to 4800 Bds. It is not a good idea to go down 4800 Bds, as the
performance of the software should be lower.

 - Change the LM324 fitting out some TNC RS232 line drivers by a TL074 or
TL084.

 - HF detection in the TNC. Errors and resynchronizations will appear when
the transmitter is running. There is no real cure, you must investigate.

 You can also use communication drivers like ESS, COMBIOS or MBBIOS if you
are not still using them.

 C/ Repetition of the last message number.

 The last message number displayed, read, killed, etc... can be utilised
again with the # (pound) character. This short-cut allows as for an example
to read a message after a list or to suppress it just after its reading.

 Example :

 F6FBB BBS > R 12351
 The message is displayed ...
 F6FBB BBS > K #
 Message #12351 killed.
 F6FBB BBS >

FBB 5.15 Feb 06 1993 Page - 145

APPENDIX -6- FBB Forward Protocole.

 FBB software includes two forward protocoles. The first one is standard with
MBL/RLI protocole. The second one was developped to allow
efficiency, particularly on long links where propagation time of data are
long. The exchange of commands is reduced to a minimum, and not acknoledged
to get time. The data transfer direction is changed every block of data, a
block of data holding up to five messages. This uses the "pipeline" effect of
long links (Nodes and digipeaters), and gain some time over short links
(HF...).

 FBB protocole is very simple in its principle. It is based on MID/BID usage.
The identification is made by the F letter in the SID (system type identifier
contained in square brackets). All command lines must start in first collumn
with the 'F' character. All command lines are ended by a return (CR)
character.

 Suppose I call another BBS to forward some mail. When I connect another BBS
using FBB protocole, I will receive the SID followed by a text and the prompt
(">"). If the SID contains the F flag, I will send immediately my SID and the
first proposal.

 Proposals looks like :

 FB P F6FBB FC1GHV FC1MVP 24657_F6FBB 1345
 F> HH

 FB : Identifies the type of the command (proposal)
 P : Type of message (P = Private, B = Bulletin).
 F6FBB : Sender (from field).
 FC1GHV : BBS of recipient (@field).
 FC1MVP : Recipient (to field).
 24657_F6FBB : BID ou MID.
 1345 : Size of message in bytes.
 F> : End of proposal.
 HH is optional. It is the checksum of the whole proposal in hexadecimal.

 ALL the fields are necessary. This kind of command must hold seven fields.
If a field is missing upon receiving, an error message will be send
immediately followed by a disconnection.

 A proposal can handle up to five FB command lines. If the total size of
messages seems to be too important, the proposal can handle less lines. In
FBB software, a parameter is defined in INIT.SRV file to tell the maximum
size of the message block. It is set by default to 10KB.

 Exemple of proposal :

 FB P F6FBB FC1GHV.FFPC.FRA.EU FC1MVP 24657_F6FBB 1345
 FB P FC1CDC F6ABJ F6AXV 24643_F6FBB 5346
 FB B F6FBB FRA FBB 22_456_F6FBB 8548
 F> HH

 This proposal is limited to three FB lines, as the amount of messages
overran the 10KB limit.

 When receiving the proposal, the other BBS will reject, accept or defer the
message. This command is made by a FS line :

 FS -+=

 This means :

FBB 5.15 Feb 06 1993 Page - 146

 - I don't want the first message (-).
 - I need the second message (+).
 - I defer the third message, as I'm still receiving it.

 It should interesting to defer a message if you are still receiving it on a
other channel, or if you think that the size is to big, or for another
reason. The message should be proposed again at the next connection.

 FS line MUST have as many +,-,= signs as lines in the proposal.

 When receiving the FS lines, I can send the block of messages. Each message
is made with the title on the first line, the text, and a Ctrl Z in the last
line. The is no blank line between the messages.

 Title of 2nd message
 Text of 2nd message

 ^Z

 When the other BBS has received all the asked messages, it acknoledges by
sending its proposal, and the system is reversed.

 If it has no message to send, it only sends a line :

 FF

 This line must not to be followed by a F>.

 If the other hand has no message, it sends a line :

 FQ

 and asks for the disconnection.

 Example :

 F6FBB FC1GHV
 --

 Connects FC1GHV

 Connected

 [FBB-5.11-FHM$]
 Bienvenue a Poitiers, Jean-Paul.
 >

 [FBB-5.11-FHM$] (F6FBB has the F flag in the SID)
 FB P F6FBB FC1GHV.FFPC.FRA.EU FC1MVP 24657_F6FBB 1345
 FB P FC1CDC F6ABJ F6AXV 24643_F6FBB 5346
 FB B F6FBB FRA FBB 22_456_F6FBB 8548
 F> HH

 FS +-+ (accepts the 1st and the 3rd).

 Title 1st message
 Text 1st message

 ^Z
 Title 3rd message

FBB 5.15 Feb 06 1993 Page - 147

 Text 3rd message

 ^Z

 FB P FC1GHV F6FBB F6FBB 2734_FC1GHV 234
 FB B FC1GHV F6FBB FC1CDC 2745_FC1GHV 3524
 F> HH

 FS -- (Don't need them, and send immediately the proposal).
 FB P FC1CDC F6ABJ F6AXV 24754_F6FBB 345
 F> HH

 FS + (Accepts the message)

 Title message
 Text message

 ^Z

 FF (no more message)

 FB B F6FBB TEST FRA 24654_F6FBB 145
 F> HH

 FS + (Accepts the message)

 Title message
 Text message

 ^Z

 FF (still no message)

 FQ (No more message)

 Disconnection of the link.

 In this example, FBB protocole is used as the two BBS were identified by the
F flag in the SID. If F6FBB had sent the SID [FBB-5.11-MH$] when answering
FC1GHV, the protocole should be the standard MBL/RLI.

 All callsigns are only examples !

FBB 5.15 Feb 06 1993 Page - 148

APPENDIX -7- Extension to the protocole. Compressed forward FBB.
--

 The protocole utilized for the transfer of ascii files compressed is an
extension to the existing protocole. The compressed forward is validated by
the presence of the letter B in the SID [FBB-5.12-BFHM$]. The transfer of
compressed files can only take place under FBB protocole. The presence of the
letter B in the SID without the F letter will remain without effect.

 The only difference as regard to the standard protocol is the submit line.
It can specify the type of data contained in the compressed message. FA means
that the transfer will be an ascii compressed message. FB means that the
message will be a binary compressed file (this last possibility is not yet
implemented in the version 5.12).

 The submission of an ascii message will be in the form :
 FA P FC1CDC F6ABJ F6AXV 24754_F6FBB 345

 The submission of a binary file will be in the form :
 FB P FC1CDC F6ABJ F6AXV 24754_F6FBB 345

 The transfered data are of a specific format. The transfer will be done in
binary mode. This last one is derived of the YAPP protocol which is very
reliable. All transfer is made of a header, a block of data, an end of
message and a checksum. Each transfer is equivalent to the transfer of one
message of the standard protocol and shall not be followed by a control Z,
the end of file specifier is defined in another way.

 Format of header for an ascii compressed message (submission FA) :

 <SOH> 1 byte = 01 hex
 Length of the header 1 byte = Length from the title,
 including the two <NUL> characters.
 Title of the message 1 to 80 bytes
 <NUL> 1 byte = 00 hex
 Offset 1 to 6 bytes
 <NUL> 1 byte = 00 hex

 Format of header for a binary compressed file (submission FB) :

 <SOH> 1 byte = 01 hex
 Length of the header 1 byte = Length from the filename,
 including the two <NUL> characters.
 Name of the file 1 to 80 bytes
 <NUL> 1 byte = 00 hex
 Offset 1 to 6 bytes
 <NUL> 1 byte = 00 hex

 As to follow the french regulation, the title of the message or the file
name are transmitted in ascii, not compressed.

 The offset is also transmitted in ascii and specifies the offset at which
the data should be inserted in the file (in case of a fragmented file). In
the version 5.12, this parameter is not utilized and is always equal to zero.

 A data block contains from one to 256 bytes. It begins by two bytes which
specify the format.

 Data block format :

 <STX> 1 byte = 02 hex
 Number of data 1 byte = 00 to ff hex. (00 if length = 256 bytes).

FBB 5.15 Feb 06 1993 Page - 149

 Data bytes 1 to 256 bytes

 The last data block is followed by the end of file specifier and the
checksum.

 End of file specifier format :

 <EOT> 1 byte = 04 hex
 Checksum 1 byte = 00 a ff hex

 The checksum is equal to the sum of all the data bytes of the transmitted
file, modulo 256 (8 bits) and then two's complemented.

 The checking of the checksum is very simple :

 The sum of the datas from the file and the checksum received modulo 256
(anded with FF) shall be equal to zero.

 In case of a checksum error, the message or the file is not taken to account
and the system issues a disconnect request after having sent the comment :

 *** Checksum error

FBB 5.15 Feb 06 1993 Page - 150

APPENDIX -8- Format of the ACK messages.
--

 The ACK messages on receiving have a simple and compact format. The aim is
to have a message as short as possible in order to avoid an unnecessary usage
of the network.

 The title of the message is the title of the original message with a leading
"ACK:". Example :

 ACK:Title of the original message.

 These ACK messages are true messages strickly speaking. They carry the
origin, the destination, the route and the MID but they are of a particular
type, the type A (private are of type P, bulletins of type B, etc...). This
difference allows the routing of these messages without the lines "R:". This
is done again with the aim of avoiding an excessive load by data which are of
no use in this case.

 To keep the compatibility with the existing forwarding protocol, the type of
these messages is changed to P (private) if the receiving BBS of the
forwarding does not know the type of ACK messages (specified in the SID [FBB-
5.12-ABFHM$] by the letter A). In this case, the ack message will continue on
its route as a private message.

 The ACK messages are of the following form :
 ACK:Message test. <-- Title of message
 Msg FD1CDC@F6FBB - 22-dec 17:28z <-- Text of message

 It tells that the message that you had sent to FD1CDC at F6FBB and whose
title is "Message test" has been received in the BBS F6FBB on 22 dec at 12:28
GMT.

FBB 5.15 Feb 06 1993 Page - 151

APPENDIX -9- Replacement characters or wildcards.

 Most of the search commands or list commands and some configuration files as
well, accept replacement characters or wildcards.

 Character Replaces

 @ a letter
 ? an alphanum character (letter or number)
 = a printable character
 # a numeral character or the # character
 * a string of printable characters.
 & a dot followed by printable characters. (equiv to .*)

FBB 5.15 Feb 06 1993 Page - 152

APPENDIX -10- Programming technics for servers.

 The servers are exec programs (.COM or .EXE). They are compact and fast.
They will work as the function of the messages which are addressed to them.

 They should be compact because the available memory to run their application
is limited (check the information Ok:nnnn in the status window). They should
be fast because they are executed in the MsDos environment which is not
multi-task.

 The programming language can be of any kind provided that it could be
compiled and that it is able to read parameters which are given appended in
the command line.

 I wrote three servers in TurboC but I have no equivalent in TurboPascal or
in TurboBasic, since I usually don't write in these languages. The working
principle remains always the same whatever language is utilized.

 The program is called with the following manner from the MsDos (Example for
the REQDIR.COM command) :

 C> REQDIR.COM TEMP.$$$

 TEMP.$$$ is the name of the file in which the message addressed to REQDIR is
located. It is necessary to read the name of this file in the command line,
as the one can change from one call to another.

 The file TEMP.$$$ contains the message with the following format :

 SP REQDIR < F6FBB
 Title of message
 Text of message line 1
 Text of message line 2
 ...
 Text of message last line.
 /EX

 The server should then eventually work as a function of the contents of this
message.

 The server can read and make use of the configuration file of the BBS
software (in particular INIT.SRV) to execute its process.

 If the server generates a return message, it should be APPENDED to the
incoming mail file to the BBS. The name of this file can be found in
INIT.SRV. Take care : it is necessary to open the incoming mail file in
APPEND as to add the answer at the end of the file. If it is not done this
way, the messages which could be waiting in this file are destroyed.

 The incoming mail file is tested each and every minute, except in the case
of the usage of a service, where it is tested right after.

 The format of the messages in the incoming mail file is identical to the
format of the file given to the server. Several messages can be written
sequentially in the file. There should not be blank lines or separations
between the messages. The routing fields (@ field), and the originator (<
field) should mandatory be specified. The originator field is the callsign of
the BBS which is taken from the INIT.SRV file.

FBB 5.15 Feb 06 1993 Page - 153

 Example of server REQFIL written in C language.

/*
 * REQFIL.C Server example.
 *
 * This server is called with a command line like this :
 *
 * REQFIL.COM FILE
 *
 * FILE is the filename of the message to be answered.
 *
 *
 * This server answers to a message like this :
 *
 * SP REQFIL < FC1EBN
 * TEST.TXT @ F6ABJ
 * Text is not necessary
 * /EX
 *
 * by a message like this
 *
 * # <- This is a local message
 * SP FC1EBN @ F6ABJ < F6FBB <- command line
 * Req File : TEST.TXT <- subject
 * Contents of the file <- text
 * etc.....
 * /EX <- end of text (must be in 1st column)
 *
 * Appent to mail in bbs file.
 *
 *
 * The server receives from FBB software 1 argument :
 *
 * argv[1] = Name of the file including the message received from
 * FBB software.
 *
 * ==
 * The server must APPEND its answer to MAIL.IN
 * file to avoid destroying existing mail.
 * ==
 *
 * As this server opens the INIT.SRV file, it must be in the same
 * directory.
 *
 */

 #include <stdio.h>
 #include <fcntl.h>
 #include <sys/stat.h>

 /* Offsets of parameters from INIT.SRV */

 #define BBS_CALL 1
 #define USER_DIR 8
 #define MAIL_IN 14

 main(int argc, char **argv)
 {
 #define LINE 80
 int end = 0;
 int index = 0;
 FILE *fptr;

FBB 5.15 Feb 06 1993 Page - 154

 char buffer[LINE];
 char sender[LINE];
 char route[LINE];
 char file[LINE];
 char bbs_call[LINE];
 char base_dir[LINE];
 char mail_in[LINE];

 if (argc != 2) exit(1); /* Check the number of arguments */

 /* The first task is to open and then read the message */

 fptr = fopen(argv[1], "rt") ; /* Open the received message */
 if (fptr == NULL) exit(1);

 fgets(buffer, LINE, fptr); /* Read the command line */
 sscanf(buffer, "%*s %*s %*s %s\n", sender);

 *file = *route = '\0';
 fgets(buffer, LINE, fptr); /* Read the subject */
 strupr(buffer); /* Capitalize */

 /* Scan dir and route */
 sscanf(buffer, "%[^@\n]%[^\n]", file, route);

 fclose(fptr); /* All needed is read in the message */

 /* We must get some informations from the INIT.SRV file */

 fptr = fopen("INIT.SRV", "rt"); /* Open the file */
 if (fptr == NULL) exit(1);

 /* Scan the file to get the requested lines. */
 while (!end) {
 fgets(buffer, LINE, fptr) ;
 if (*buffer == '#') continue; /* Comments ignored */

 switch (++index) {

 case BBS_CALL:
 sscanf(buffer,"%[0-9A-Za-z]", bbs_call);
 break; /* Callsign */

 case USER_DIR:
 sscanf(buffer,"%s\n", base_dir);
 break; /* Users directory */

 case MAIL_IN :
 sscanf(buffer,"%s\n", mail_in);
 end = 1; /* Mail in file */
 break;

 }
 }

 fclose(fptr);

 /* Append the answer to mail in file */
 /* Mail in file is opened in appent text mode */

 if (fptr = fopen(mail_in, "at")) {

 /* Tell that this is a message from this BBS */

FBB 5.15 Feb 06 1993 Page - 155

 fprintf(fptr, "#\n");

 /* Send command line */
 fprintf(fptr, "SP %s %s < %s\n",
 sender, route, bbs_call);

 /* Send subject and requested file */
 send_file(fptr, base_dir, file);

 /* Send end of message */
 fprintf(fptr, "/EX\n");

 /* That's all ! */
 fclose(fptr);
 }
 exit(0); /* Tell BBS all is correct */
 }

 int points(char *ptr) /* Looks for a ".." sequence in the path */
 {
 while (*ptr) {
 if ((*ptr == '.') && (*(ptr+1) == '.')) return(1);
 ++ptr;
 }
 return(0); /* ".." not fond ! */
 }

 send_file(FILE *fptr, char *base_dir, char *filename)
 {
 #define BUF_SIZE 1000
 int fd;
 int nb;
 char path[256];
 char buffer[BUF_SIZE];
 char last_char;

 sprintf(path, "%s%s", base_dir, filename); /* Complete path */

 fprintf(fptr, "ReqFil 1.1 : %s\n", filename); /* Subject */

 if ((!points(path)) && ((fd = open(path, O_RDONLY | O_TEXT)) != -1)) {
 while (nb = read(fd, buffer, BUF_SIZE)) {
 fwrite(buffer, nb, 1, fptr);
 last_char = buffer[nb-1];
 }
 close(fd);

 /* Be sure /EX will be in first column */
 if (last_char != '\n') fputc('\n', fptr);

 }
 else fprintf(fptr, "File not found !\n");
 }

FBB 5.15 Feb 06 1993 Page - 156

APPENDIX -11- Contents of directories.

These files and directories are mandatory. Other files may reside but will be
created by the system or by the sysop.

Directory FBB :

[BIN] BAT, COM and EXE files.
[BINMAIL] Compressed messages.
[DOCS] Files used for DOCS command.
[OLDMAIL] Archives of messages.
[MAIL] Ascii messages.
[PG] COM and EXE files for PG command.
[SYSTEM] System files.
EPURMESS INI Init file for EPURMESS.
INIT SRV Init file for SERV.
NEWDOC SYS Configuration for NEWDOC server.

Directory BIN :
APPEL BAT Batch file running the software.
CLEANUP COM Program to clean MAIL and BINMAIL directory.
CUT COM Copy/paste utility.
EPURMESS COM Message processing.
EPURWP COM White Pages processing.
ESS COM RS232 driver.
ESSKAM COM KAM RS232 driver.
FBBIOS COM MODEM driver.
FV COM FV shareware used for LIST command in FbbDos.
LOGSTAT EXE Log statistics.
MAINTINF COM INF.SYS maintenance program.
MAINTREJ COM REJET.SYS maintenance program.
MKINF514 COM Change INF.SYS for 5.13 to 5.14
NEWDOC COM NEWDOC server.
REQDIR COM REQDIR server.
REQFIL COM REQFIL server.
SATUPDAT EXE Automatic update of satellite database.
SERV EXE FBB software EXE file.
SETUSER COM set a user owner of a FbbDos file.
SLEEP EXE waits for some seconds.
TLABEL COM processes label file of FbbDos.

Directory BINMAIL :
[MAIL0] [MAIL1] [MAIL2] [MAIL3] [MAIL4]
[MAIL5] [MAIL6] [MAIL7] [MAIL8] [MAIL9]

Directory MAIL :
[MAIL0] [MAIL1] [MAIL2] [MAIL3] [MAIL4]
[MAIL5] [MAIL6] [MAIL7] [MAIL8] [MAIL9]

Directory SYSTEM :
[FWD] Directory for FORWARD.SYS includes
[LOG] Directory for FBBLOG.nn files.
[LANG] Directory for .TXT .HLP .ENT language files.
[SAT] Directory for satellite files
[WP] Directory for White pages database
BALISEn SYS Beacon file.
BBS SYS BBS callsigns
CRON SYS Hour work.
INITTNCn SYS Initialization of TNC.
FORWARD SYS Forwarding description.
LANGUE SYS Language description
MAINTn SYS Housekeeping text.

FBB 5.15 Feb 06 1993 Page - 157

MEMO SYS CtrlF0 to CtrlF9 aliases
PASSWD SYS Password file.
PORT SYS Port description.
PROTECT SYS Directories protection.
REJET SYS Messages reject.
SWAPP SYS Swap file.

FBB 5.15 Feb 06 1993 Page - 158

APPENDIX -12- CONNECTION FILTERING.

 FBB software allows filtering on connection. Filtering is not done by the
BBS software but by external programs developped by users.

 Connection filter may be interactive and allows to incorporate some features
like dedicated information for predifined callsigns, password filtering,
etc...

 I did not develop such programs, but this is an open door to many
applications.

 The C_FILTER program must be found by the PATH of MsDos. Its extension can
be COM or EXE, and it must be little and fast as multitasking is stopped
during the activity of this program. If this program is not found, it will
not be called until the BBS is rebooted.

 When receiving the connection, the C_FILTER program (if found) is called
with some arguments including a level number. This number is incremented each
time the program is called in the same connection session. The first time the
level number will be 0.

 The line arguments given to the C_FILTER program are :

- Callsign (format as F6FBB-8).
- Level number (0 is the first time, up to 99).
- Flags of the user (binary number as user's mask of INIT.SRV).
- New : Flag indicating if the user is unknown in the BBS database.
- Record number of the user in INF.SYS.
- Received data (each word is a new argument).

 The C_FILTER program ends with an exit value. This value is very important
and tells the BBS what to do :

 0 : end of session and return to the BBS menu.
 1 : the program will be called again and the level number is incremented.
 2 : the user will be disconnected.

/*
 * C_FILTER.C
 *
 * Connection filter for FBB BBS software. (C) F6FBB 1991.
 *
 */

#include <stdio.h>

/*
 * Connexion filter called for each connection.
 * All datas sent to stdout will be sent to the user.
 *
 * Filter is called with some arguments on the command line :
 * C_FILTER CallSign Level Flags New Record ReceivedData....
 *
 * The return value tells the BBS if C_FILTER must be called again or not
 * 0 if the BBS can go on,
 * 1 if the C_FILTER must be called again
 * 2 if the user must be disconnected.
 *
 * Callsign is in the FORM CALLSIGN-SSID (F6FBB-0).

FBB 5.15 Feb 06 1993 Page - 159

